An Analytical Approach for Single and Mixed-Model Assembly Line Rebalancing and Worker Assignment Problem

Authors

  • Parvaneh Samouei Department of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.
  • Parviz Fattahi of Industrial Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.
Abstract:

In this paper, an analytical approach is used for assembly line rebalancing and worker assignment for single and mixed-model assembly lines based on a heuristic-simulation algorithm. This approach helps to managers to select a better marketing strategy when different combinations of demands are suitable.Furthermore, they can use it as a guideline to know which worker assignment is better for each combination. We show the efficiency of the proposed approach for single and mixed-model assembly lines using different benchmarked standard test problems with different number of tasks, stations, skilled workers and demands. Comparisons show the heuristic-simulation algorithm is faster than the GAMS software, and its results are optimum or very close to the optimum values.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

An algorithm for integrated worker assignment, mixed-model two-sided assembly line balancing and bottleneck analysis

This paper addresses a multi-objective mixed-model two-sided assembly line balancing and worker assignment with bottleneck analysis when the task times are dependent on the worker’s skill. This problem is known as NP-hard class, thus, a hybrid cyclic-hierarchical algorithm is presented for solving it. The algorithm is based on Particle Swarm Optimization (PSO) and Theory of Constraints (TOC) an...

full text

Simultaneous Multi-Skilled Worker Assignment and Mixed-Model Two-Sided Assembly Line Balancing

This paper addresses a multi-objective mathematical model for the mixed-model two-sided assembly line balancing and worker assignment with different skills. In this problem, the operation time of each task is dependent on the skill of the worker. The following objective functions are considered in the mathematical model: (1) minimizing the number of mated-stations (2), minimizing the number of ...

full text

A Bi-Objective Approach to an Assembly Line Re-Balancing Problem: Model and Differential Evolution Algorithms

Assembly lines are special kinds of production systems which are of great importance in the industrial production of high quantity commodities. In many practical manufacturing systems, configuration of assembly lines is fixed and designing a new line may be incurred huge amount of costs and thereby it is not desirable for practitioners. When some changes related to market demand occur, it is wo...

full text

Two extensions for the assembly line worker assignment and balancing problem: parallel stations and collaborative approach

In this article, we introduce two new variants of the assembly line worker assignment and balancing problem that allow parallelization of and collaboration between heterogeneous workers. These new line balancing approaches introduce an additional level of flexibility in the assignment and planning process, which may be particularly useful in practical situations where the aim is to progressivel...

full text

Solving a multi-objective mixed-model assembly line balancing and sequencing problem

This research addresses the mixed-model assembly line (MMAL) by considering various constraints. In MMALs, several types of products which their similarity is so high are made on an assembly line. As a consequence, it is possible to assemble and make several types of products simultaneously without spending any additional time. The proposed multi-objective model considers the balancing and sequ...

full text

‘BALANCING AND SEQUENCING’ VERSUS ‘ONLY BALANCING’ IN MIXED MODEL U-LINE ASSEMBLY SYSTEMS: AN ECONOMIC ANALYSIS

With the growth in customers’ demand diversification, mixed-model U-lines (MMUL) have acquired increasing importance in the area of assembly systems. There are generally two different approaches in the literature for balancing such systems. Some researchers believe that since the types of models can be very diverse, a balancing approach without simultaneously sequencing of models will not yield...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  79- 91

publication date 2016-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023